
MotionXpert
Advanced Precision Motion Control
for Electric Axes

Contents
MotionXpert 1

Description . 1
Block diagram . 2
Inputs . 2
Outputs . 16
FAQ . 18
Examples . 19

Fine-tuning the frequency drive’s control parameters . 20
Configure the MotionXpert function block parameters . 24

Description
The MotionXpert function block is a versatile and advanced technological PLC function block designed for pre-
cise position, speed, and acceleration control of an electric axis. This function plays a crucial role in determining
the desired rotational speed (setpoint) for an electric motor, ensuring that the linear axis achieves the specified
position, speed, and acceleration set values, depending on the selected operational mode.

This function can be operated in various modes, including Absolute Movement Mode, Relative Move Mode,
jog mode with push buttons, jog mode with joystick and Motor Speed Mode. The motor speed control mode is
particularly suited for applications where position feedback to the PLC program is not required.

Each mode is tailored to specific motion control needs, providing flexibility and precision in a wide range of ap-
plications. Additionally, the function is equipped with a Stop input, allowing for an immediate motor stop with an
adjustable deceleration rate at any given moment, ensuring safety and control.

The MotionXpert function is designed with separate inputs for setpoints of position, speed, acceleration, and
Jerk for each operational mode. This allows for highly customized and flexible control configurations tailored to
specific application needs.

At the core of this function is an internal trajectory generator, which enables highly accurate and smooth control
of the linear axis’s motion. This sophisticated technology ensures optimal performance, making it an essential
component in advanced motion control systems.

The diagram illustrates how theMotionXpert function block integrates into the overall control system, highlighting
its role in achieving precise and reliable position control of the linear axis.

Rotational speed feedback

Position feedback

Linear axis

Electrical motor

CtrlOut

Figure 1: Integration of the function into the overall control system.

Compatible with various PLC platforms like Siemens S7, Siemens TIA Portal, Rockwell Studio AIO, Rockwell
RSLogix 5000, Rexroth IndraWorks, B&R Automation Studio, and Beckhoff TwinCAT, MotionXpert provides the
same high performance on any platform.

Block diagram

Reinit

GenPar

ParMovAbs

ParMovRel

ParJog

ParSpdCtrl

ParStop

CtrlPar

ExeMov

JogFw

JystkInp

JystkRes

JogBw

Stop

Ack

Enb

CtrlOut

Mode

ActPos

PosTrj

SpdTrj

AccTrj

Busy

Done

Error

Inputs
GenPar

SampleTime <REAL>
MaxOut <REAL>
MinOut <REAL>
SupImpCtrl <REAL>
Digits <INT>

2

GenPar → SampleTime - Calling frequency of the controller, <REAL>

The sample time, in second, of the cyclic interrupt task of the plc at which the function is running. A higher
sampling frequency allows for more precise control.

GenPar → MaxOut - Maximum Output, <REAL>

Is used to define the upper limit of the CtrlOut output, which represents the speed setpoint for the electric
motor.

GenPar → MinOut - Minimum Output, <REAL>

Is used to define the lower limit of the CtrlOut output to a specific value.

GenPar → SupImpCtrl - Suppress internal trajectory generator, <REAL>

The SupImpCtrl input is intended for applications where multiple axes need to be synchronized in position
or speed or where the torque of the electric motor must be manipulated by a superimposed controller. This
input allows an external controller to manipulate the position or speed of the linear axis or the torque of the
motor, enabling precise coordination and adaptive control in complex systems.

The schematic of the signal flow, as depicted in figure 2, illustrates how the SupImpCtrl input interacts with
other components within the control system, ensuring that the external controller’s commands are effectively
integrated into the overall motion control process.

Figure 2: Schematic of the controller signal flow

GenPar → Digits - Resolution of the calculated movement trajectory, <INT>

The Digits input is an integer value that determines the resolution of the decimal places for the calculated
movement trajectories. This setting controls the precision of the trajectory calculations, ensuring accurate
motion control. A value of 4 is recommended, which provides a good balance between precision and com-
putational efficiency, allowing the function to generate smooth and accurate movement paths.

ParMovAbs
TgtPos <REAL>
MaxSpdSetPnt <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

3

ParMovAbs → TgtPos - Position setpoint for absolute movement, <REAL>

The input allows users to specify the desired target position for the linear axis. It can be defined in any unit
appropriate for the application (e.g., meters, centimeters, millimeters, micrometer). When ExeMov Input rec-
ognizes a rising edge, the function generates a trajectory from the current position to the specified target.
The internal position controller ensures that the linear axis follows this trajectory accurately. To operate the
function in Absolute Move Mode, theMode input must be configured with a value of 1.

Important: It is essential to understand that any changes to the TgtPos ,MaxSpdSetPnt ,MaxAccSetPnt and
JerkSetPnt during axis movement are internally ignored by the function block. The function block responds to
changes only when PosTrjmatches TgtPos . The Busy output serves as an indicator of the block’s readiness:
When the Busy output of the block is logicaly True , it indicates that the axis is in motion, and the controller
will not respond to new setpoints. Conversely, if it is logically False , the axis is in a steady state, allowing
the controller to react to new setpoints. See figure 3.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

2

4

6

8

10 PosTrj [[mm]
ActPos [mm]
ParMovAbs.TgtPos [mm]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

-500

0

500
CtrlOut [rpm]

Figure 3: Position trajectory, actual position and busy signal during movement.

ParMovAbs → MaxSpdSetPnt - Maximum speed setpoint for absolute movement, <REAL>

This input sets the maximum allowable speed of the linear axis during the movement. It is defined in the
same unit as the TgtPos input, per second. This parameter ensures that the linear axis moves at a controlled
speed while reaching the target position defined by TgtPos . This sets the top speed for the linear axis during
movement. However, factors like distance, accelerationMaxAccSetPnt and jerk JerkSetPntmight make it go
slower than this speed. See figure 4.

4

0.5 1 1.5 2 2.5 3
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3
Time (seconds)

0

5

10

15

SpdTrj [mm/s]
ParMovAbs.MaxSpdSetPnt [mm/s]

0.5 1 1.5 2 2.5 3
Time (seconds)

-50

0

50

AcccTrj [mm/s^2]
ParMovAbs.MaxAccSetPnt[mm/s^2]

0.5 1 1.5 2 2.5 3
Time (seconds)

5

10

15
PosTrj [mm]
ActPos [mm]
ParMovAbs.TgtPos [mm]

Figure 4: Upper limit of the speed and acceleration trajectory.

ParMovAbs → MaxAccSetPnt - Maximum acceleration for absolute movement, <REAL>
This input determines the maximum allowable acceleration of the linear axis during the movement. It is
measured in the same unit as TgtPos per second squared. This parameter needs to be customized based
on the specific system requirements. MaxAccSetPnt plays a critical role in regulating the acceleration of the
linear axis as it follows the trajectory towards the target position.

ParMovAbs → JerkSetPnt - Jerk setpoint for absolute movement, <REAL>

JerkSetPnt controls the abruptness or smoothness of motion by regulating the rate of change of acceleration.
It is measured in the same unit as TgtPos per second cubed. Adjusting JerkSetPnt allows users to customize
the motion profile according to their desired level of abruptness or smoothness. See figure 5.

Setting a jerk value as a setpoint is important for controlling the smoothness of acceleration and decel-
eration transitions. By managing the rate at which acceleration changes, users can prevent sudden, harsh
movements that could cause mechanical wear or instability in the system. This ensures a smoother and
more controlled operation, which is especially beneficial in applications where precision and mechanical
longevity are critical.

5

Figure 5: Movements with different jerk setpoints.

ParMovRel
Distance <REAL>
MaxSpdSetPnt <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

ParMovRel → Distance - Distance for the relative movement, <REAL>
The ParMovRel input defines the distance the linear axis should move in relative movement mode, similar
to TgtPos input of the ParMovAbs structure in absolute movement mode, but with the key difference that
it specifies the relative distance to be traveled rather than an absolute position. A positive value causes
forward movement, while a negative value results in backward movement. The motion is initiated when a
rising edge is detected on the ExeMov input. It is important to note that any changes to the parameters set by
ParMovRel during the motion will not be processed by the function until the current movement is completed.
To operate the function in relative move Mode, the Mode input must be configured with a value of 2. See
figure 6.

6

1 2 3 4 5 6
Time (seconds)

0

0.5

1

1.5

2

ExeMov
Mode

1 2 3 4 5 6
Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy

1 2 3 4 5 6
Time (seconds)

-5

0

5

PosTrj [mm]
ActPos [mm]
ParMovRel.Distance [mm]

1 2 3 4 5 6
Time (seconds)

-500

0

500 CtrlOut [rpm]

Figure 6: Movements in relative mode.

ParMovRel → MaxSpdSetPnt - Maximum speed setpoint, <REAL>

See the description ofMaxSpdSetPnt of the structure ParMovAbs .

ParMovRel → MaxAccSetPnt - Maximum acceleration setpoint, <REAL>

See the description ofMaxAccSetPnt of the structure ParMovAbs .

ParMovRel → JerkSetPnt - Maximum acceleration setpoint, <REAL>

See the description of JerkSetPnt of the structure ParMovAbs .

ParJog
TgtSpd <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>
EnbPosCtrl <REAL>

ParJog → TgtSpd - Target speed setpoint, <REAL>

This input specifies maximum allowable speed of the linear axis during the movement in jogging operations
in mode 3 and 4 (See Mode description and figure 10 and 11). It is measured in the same unit as Actual
Position per second.

ParJog → MaxAccSetPnt - Maximum acceleration setpoint for jog mode, <REAL>

This input determines the maximum allowable acceleration/deceleration of the linear axis during the move-
ment in jogging operations in mode 3 and 4. (See Mode description). It is measured in the same unit as
Actual Position per second squared.

7

ParJog → JerkSetPnt - Jerk setpoint for jog mode, <REAL>

JerkSetPnt controls the abruptness or smoothness of motion in jogging operations in mode 3 and 4 by regu-
lating the rate of change of acceleration. It is measured in the same unit as Actual Position per second cubed.

Adjusting JerkSetPnt allows users to customize the motion profile according to their desired level of abrupt-
ness or smoothness.

ParJog → EnbPosCtrl - Enable position controller, <REAL>

This input allows the user to enable or disable closed-loop position control in Jog operations. When this input
is set to true, the linear axis operates in closed-loop control, meaning that the position feedback is actively
used to maintain accurate position control during jogging operations. If this input is set to false, the linear
axis operates in feedforward mode only, with no position feedback control, relying solely on the predefined
speed and acceleration settings. This provides flexibility depending on whether precise position control or
simple open-loop control is required during Jog Mode.

ParSpdCtrl
TgtSpd <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

ParSpdCtrl → TgtSpd - Target of speed control mode, <REAL>

The TgtSpd input is used to specify the target speed when the function block is configured in Motor Speed
Mode (Mode = 5). In this mode, the user can send a speed setpoint to the motor, which is executed with
the configured acceleration and jerk parameters. The function generates and sends a motor speed setpoint
independently of the linear axis’s position, allowing direct control of the motor’s rotational speed.

The unit for this input must be in a rotational speed format, such as RPM (revolutions per minute), rad/s
(radians per second), or as a percentage of the motor’s nominal speed. This input provides precise control
over the motor’s speed, making it ideal for applications where maintaining a specific motor speed is critical,
regardless of the linear axis position.

In Motor Speed Mode, the user can change the target speed at any time. Any change to the TgtSpd in-
put is immediately recognized by the function and is implemented using the configured acceleration and
jerk parameters. This allows for real-time adjustments to the motor speed, ensuring responsive and precise
control in dynamic applications. See figure 7.

8

1 2 3 4 5 6 7

Time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

Enb
Mode

1 2 3 4 5 6 7

Time (seconds)

-100

0

100

200

300

400

500 CtrlOut [rpm]
ParSpdCntrl.TgtSpd [rpm]

Figure 7: Movements speed control mode.

ParSpdCtrl → MaxAccSetPnt - Maximum acceleration setpoint of speed control mode, <REAL>

The MaxAccSetPnt input defines the maximum motor acceleration/deceleration when the function block is
operating in Motor Speed Mode (Mode = 5). The unit for this input can be rpm/s, rad/s², or as a percentage
of the motor’s nominal speed per second. This input controls the rate at which the motor can increase/de-
crease its speed, ensuring that acceleration/decelaration remains within safe and desired limits.

Please note that changes to this input are only possible when the motor is running at a constant speed.
During the transition from one target speed (TgtSpd) to another, any changes to theMaxAccSetPnt input will
not be processed by the function.

ParSpdCtrl → JerkSetPnt - Maximum jerk setpoint of speed control mode, <REAL>

tThis input defines the jerk of the motor during speed changes in Motor Speed Mode (Mode = 4). Jerk is
the rate of change of acceleration or deceleration and is measured in units such as rpm/s², rad/s³ or as a
percentage of the motor’s nominal speed per second cubed.

ParStop
DecSetPnt <REAL>

ParStop → DecSetPnt - Deceleration of the stop trajectory, <REAL>

The function block includes a stop feature that allows the motor to be halted immediately, regardless of the
current mode. As soon as a rising edge is detected on the Stop input, the function triggers a stop ramp to
bring the motor to zero speed. The deceleration during this stop is defined by the DecSetPnt input, which
can be configured in units such as [rpm/s], [rad/s²], or as a percentage of the nominal speed per second.

After the stop input is activated, normal operation of the function can only resume once the acknowledge,
Ack , input is activated. This ensures that the system is properly reset and ready for continued use after an
emergency or controlled stop. See figure 8.

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

0.5

1

1.5

2

Mode

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

0.2

0.4

0.6

0.8

1

Sop
ExeMov

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

2

4

6

PosTrj
ActPos
ParMovAbs.TgtPos

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

200

400

600
CtrlOut

Figure 8: Maximum deceleration of the stop trajectory.

CtrlPar
Kp <REAL>
Ki <REAL>
GainFwdSpdCtrl <REAL>
GainBwdSpdCtrl <REAL>
ModeIntCntrl <REAL>
Window <REAL>
TuneTime <REAL>

CtrlPar → Kp - Controller P-Factor, <REAL>

It represents the amplification factor of the P-controller within the position controller. A higher Kp value can
enhance control accuracy. However, caution is advised: setting the Kp value excessively high may render
the closed-loop system unstable. For optimal results and to maintain system stability, it’s recommended
to initiate with a modest Kp value and incrementally adjust upwards to achieve the desired precision. See
example 1 for optimal adjustment.

CtrlPar → Ki - Controller I-Factor, <REAL>
Ki stands for the amplification factor of the I-controller within the position controller. A Ki value set to zero
effectively deactivates the I-controller. While a higher Ki value results in swifter error integration, enhancing
overall accuracy, it can also introduce increased oscillations in the closed-loop system. For best perfor-
mance, it’s advisable to commence with a low Ki value and gradually increase it until the desired accuracy
level is reached, balancing precision with system stability. See example 1 for optimal adjustment

CtrlPar → GainFwdSpdCtrl - Positive speed feedforward, <REAL>

GainFwdSpdCtrl is a system parameter that adds a constant value for positive velocities to the control signal,
improving trajectory tracking. It reduces the error signal and facilitates smoother following of the desired
trajectory. The optimal positive feedforward value depends on the hardware and system dynamics, which
can be determined through measurement and analysis, as illustrated in example 1.

10

CtrlPar → GainBwdSpdCtrl - Negative speed feedforward, <REAL>

GainBwdSpdCtrl is a systemparameter that adds a constant value for negative velocities to the control signal,
improving trajectory tracking. It reduces the error signal and facilitates smoother following of the desired
trajectory. The optimal positive feedforward value depends on the hardware and system dynamics, which
can be determined through measurement and analysis, as illustrated in example 1.

CtrlPar → ModeIntCntrl - Mode selection for internal integral controller, <REAL>

This input determines the behavior of the I-Controller. When set to False , the I-Controller remains con-
tinuously active. If set to True , the I-Controller operates only in the steady state, deactivating during the
linear axis movement. We advise setting this input to True , as allowing the I-Controller to function solely in
the steady state often provides superior stability and accuracy for linear axes. This approach typically mini-
mizes, if not eliminates, significant overshoots and, by enabling an increase in the Ki factor, greatly enhances
accuracy.

CtrlPar → Window - Tolerance window of the target position, <REAL>

TheWindow input is used to define a positional tolerance band around the target position TgtPos of the Par-
MovAbs structure. When the actual position ActPos of the linear axis is within half of theWindow value from
the target position and remains within this range for at least the specified TuneTime (which is configurable in
seconds), the function block will send a speed setpoint of exactly 0.0 to the motor.

This functionality is crucial for achieving precise positioning. It ensures that when the axis gets close enough
to the target position, the motor is gently brought to a complete stop, preventing overshoot and ensuring the
axis remains within the desired positional accuracy. In figure 9 you can differentiate between three states:
1. Window and Positioning: As the actual position (black line) approaches the target position (red dashed

line), the difference between them becomes smaller than half of the Window value (illustrated by the
blue dashed lines).

2. TuneTime Activation: Once the actual position stays within thisWindow range for a duration of at least
TuneTime (e.g. 0.5 seconds, as indicated on the graph), the function block signals the motor to reduce
speed to exactly 0.0 (as shown in the CtrlOut graph).

3. Final Positioning: This results in the motor coming to a smooth and controlled stop.
This feature is essential for applications requiring high positional accuracy, as it prevents oscillations around
the target position and ensures a stable final position.

11

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

5.9

6

6.1

PosTrj
ActPos
ParMovAbs.TgtPos

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

1

2

3

4

5

busy

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

50

100

CtrlOut

Window=0.2

TuneTime=0.5 sec

Figure 9: Behaviour of the tolerance window and tune time.

CtrlPar → TuneTime - Amount of time in tolerance window, <REAL>
The TuneTime input specifies the minimum amount of time that the actual position ActPosmust remain within
the definedWindow around the target position TgtPos of the structure ParMovAbs before the function block
sends a zero-speed setpoint to the motor. This time parameter is configurable in seconds.

The purpose of the TuneTime input is to ensure that the axis has settled within the acceptable positional
tolerance before bringing the motor to a complete stop. By requiring the position to stay within the Win-
dow for a specified duration, TuneTime helps to prevent premature stopping due to transient conditions or
small oscillations. This results in more stable and precise final positioning, reducing the likelihood of over-
shoot or drift after the motor has stopped. See figure 9.

Enb - Turn controller on or off, <BOOL>
This input controls the activation or deactivation of the function. When the input signal is turned off False ,the
function no longer responds to changes in the setpoints and does not generate any trajectory. Themonitoring
signal PosTrj reflects the current position, while the other monitoring signals SpdTrj and AccTrj are set to zero.
when the function is deactivated, the CtrlOut is set to zero, indicating that there is no movement caused by
the controller. For an overview, see table 1.

CtrlOut PosTrj SpdTrj AccTrj
Enb =True calculated based on

the position control
algorithm

calculated by posi-
tion trajectory gener-
ator

calculated by speed
trajectory generator

calculated by ac-
celeration trajectory
generator

Enb =False 0.0 reflects current posi-
tion ActPos

0.0 0.0

Table 1: Behavior of the output signals depending on the Enb input

12

Mode - Mode selection input, <INT>

The function offers five different modes, as seen in table 2, which can be selected using theMode input:
• Mode = 1: In this mode, the function block operates as an absolute movement position controller. The
active set of parameters is ParMovAbs . The user can define a target position, and upon detecting a
rising edge on the ExeMov input, the linear axis moves to this target position.

• Mode = 2: In this mode, the function block acts as a relative movement position controller. The active
parameter set is ParMovRel . The user can define a distance to move relative to the current position.
When a rising edge is detected on the ExeMov input, the linear axis moves by the specified distance.

• Mode = 3: When theMode input is set to 3, the function operates in Jog Mode using two push buttons,
JogFw and JogBw . If JogFw is activated, the linear axis moves forward at the speed defined by TgtSpd of
theParJog structure, alongwith the configured acceleration and jerk parameters. If JogBw is activated,
the axis moves backward. Once the push buttons are released, the axis decelerates to a stop, using
the defined acceleration and jerk settings, ensuring smooth and controlled movement. See figure 10.

• Mode = 4: In Mode 4, the function operates in Jog Mode with a joystick. The user can dynamically
control the movement of the linear axis by adjusting the joystick. The TgtSpd input of the ParJog struc-
ture sets the maximum speed for the axis, while the joystick position determines the actual speed and
direction. When the joystick is centered (neutral position), the axis decelerates and stops using the
configured acceleration and jerk values, ensuring precision in manual movements. See figure 11.

• Mode = 5: In thismode, the function block is configured to send rotational speed setpoints to themotor.
The active parameter set isParSpdCtrl . The user can send a specific speed setpoint with configurable
acceleration and jerk to the motor. In this mode, the motor speed is controlled independently of the
linear axis position. See figure 7.

1 2 3 4 5

Mode Absolute Move
Pos. Control

Relative Move
Pos. Control

PushButton Jog
Move

Joystick Jog
Move

Motor Speed
Control

Table 2: The different modes of the MotionXpert function block

0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

0

1

2

3

Enb
Mode

0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

0

0.5

1

JogFw
JogBw

0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

-5

0

5

SpdTrj
ParJog.TgtSpd

0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

0

1

2

3

PosTrj
ActPos

0.5 1 1.5 2 2.5 3 3.5

Time (seconds)

-500

0

500

CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 10: Mode = 3: Behaviour of in Jog Mode with Push Buttons.

13

1 2 3 4 5 6 7 8

Time (seconds)

0

1

2

3

4

Enb
Mode

1 2 3 4 5 6 7 8

Time (seconds)

-100

-50

0

50

100
JystkInp [%]

1 2 3 4 5 6 7 8

Time (seconds)

-5

0

5

SpdTrj
ParJog.TgtSpd

1 2 3 4 5 6 7 8

Time (seconds)

0

5

10
PosTrj
ActPos

1 2 3 4 5 6 7 8

Time (seconds)

-500

0

500

CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 11: Mode = 4: Behaviour of in Jog Mode with Joystick.

ActPos - Actual position, <REAL>

The input represents the current measured position of the linear axis. It is used in the error signal calculation
of the position controller. It should be provided in the same unit as TgtPos or Distance dependend of the
selected mode.

ExeMov - Actual position, <BOOL>

The ExeMov input is used to initiate movement in eitherMode 1 (absolute position control) orMode 2 (relative
position control). When a rising edge is detected on this input, the function block starts the movement based
on the current mode settings. InMode 1, the linear axis begins moving toward the specified target position,
while inMode 2, it moves by the defined relative distance. This input effectively serves as the start command
for executing the programmed motion.

JogFw - Input for forward movement in jog mode, <BOOL>

In Mode 3, the JogFw input controls the forward movement of the linear axis. As long as this input is active
True , the axis moves forward according to the parameters defined in ParJog . When the JogFw input is
released the function stops the linear axis using the same parameters, ensuring a smooth and controlled
stop. This input is essential for manual jogging operations, allowing the user to control forward movement
with precision. See figure 10.

JogBw - Input for backward movement in jog mode, <REAL>

The JogBw input controls the backwardmovement of the linear axis inMode 3. When this input is active True ,
the axis moves backward according to the parameters defined inParJog . If the JogBw input is released, the
function stops the linear axis using the same parameters, ensuring a smooth and controlled stop. This input
is crucial for manual jogging operations, providing precise control over backward movement. See figure 10.

14

JystkInp - Input for joystick signal, <BOOL>

The JystkInp input is designed to control the movement of the linear axis in Mode 4 when using a joystick for
manual jogging. This input accepts a value ranging from−100 to+100, where the value represents both the
direction and speed of the axis movement. See figure 11.

Speed and Direction Control: A value of +100 corresponds to 100% of the maximum speed set in Tgt-
Spd of the ParJog structure in the forward direction, while a value of −100 corresponds to 100% of the
maximum speed in the reverse direction. Intermediate values, such as+50 or−50, result in the axis moving
at 50% of the maximum speed in the respective direction.

Proportional Control: This percentage-based control allows for precise and smooth adjustments to the
axis’s speed. The closer the joystick’s input is to 0, the slower the axis moves. When JystkInp is set to 0, the
axis comes to a controlled stop, using the preconfigured acceleration and jerk values.

Dynamic and Intuitive Operation: By linking the joystick’s position to a percentage of the maximum
speed, the user can easily and accurately manage the speed and direction of the axis, making manual jog-
ging operations responsive and intuitive. This setup is ideal for applications requiring real-time, proportional
control over the axis, providing smooth and precise manual operation.

JystkRes - Input for joystick resolution, <REAL>

The JystkRes input allows the user to define the step size for the JystkInp value, helping to filter out minor,
unintended movements and ensure smooth operation.

Discretizing Joystick Input: By setting a value for JystkRes , the function block processes the JystkInp in
discrete increments. For example, if a value of 10 is entered, the joystick values will be processed in steps
like [−100,−90,−80, ..., 0, 10, 20, ..., 100]. If 5 is entered, the steps become finer, such as [−100,−95...].

Practical Benefit: This input acts like a filter, preventing the function block from reacting to small, unin-
tended joystick movements that might occur due to slight hand tremors or mechanical noise. This ensures
that only meaningful joystick inputs cause changes in the output, making the system more stable and less
sensitive to minor disturbances.

Optimizing Control: By adjusting the resolution, the user can fine-tune how responsive the system is to
joystick movements. For tasks requiring smooth, gradual control, a smaller step size can be used. For
quicker, less precise adjustments, a larger step size helps reduce unnecessary calculations.

Stop - Safety stop in all modes, <BOOL>

- The Stop input is a critical safety and control feature that overrides all other modes of operation. Regardless
of the current mode the function block is in, when a rising edge is detected on the Stop input, the function
immediately sends a zero-speed setpoint to the motor. This command is executed with a configurable decel-
eration rate, ensuring the motor comes to a controlled and safe stop. This input is essential for emergency
stops or situations where an immediate halt of the motor is required, providing a reliable way to quickly bring
the system to a stop. See figure 8

Ack - Safety stop in all modes, <BOOL>

The Ack input is used to reset the function block after a stop command has been executed via the Stop input.
Once the motor has been stopped, the function block is locked, preventing any further operations until a
rising edge is detected on the Ack input. This input serves as a safety feature, ensuring that the system
cannot resume normal operation until the stop event has been acknowledged by the user. It allows the user
to verify and confirm that the system is ready to continue, ensuring controlled and safe operation after a stop
condition.

15

Outputs
CtrlOut - Control Signal, <REAL>

The CtrlOut output is the main output of the function block, responsible for providing the motor speed set-
point. This output ensures that the linear axis reaches the desired position, or the motor achieves the target
motor speed, or safely stops the motor, depending on the selected mode. The unit of this output—whether
rpm, rad/s, or a percentage of the motor’s nominal speed—depends on the unit of the input parameters
GainFwdSpdCtrl and GainBwdSpdCtrl of the CtrlPar structure.

The CtrlOut signal must be connected to a motor speed controller, such as a frequency drive, which trans-
lates the setpoint into the actual motor speed. CtrlOut is essential for translating the function block’s control
commands into motor speed, making it a crucial link between the control system and the motor drive.

PosTrj - Position trajectory, <REAL>

The PosTrj output displays the position trajectory of the linear axis as it moves toward the target position in
Mode 1 or along the specified distance in Mode 2. When the function block is deactivated by setting Enb to
False , is inMode 5, or during the stop function, this output shows the current position of the linear axis. The
unit of PosTrj is the same as that used for TgtPos or Distance dependend on the currentMode .
This output is intended solely for display purposes and should not be used to control other functions, as
its reliability for such purposes is not guaranteed by Halow-Tech. It provides a visual representation of the
expected or current position of the axis, aiding in monitoring the system’s operation.

SpdTrj - Speed trajectory, <REAL>

The SpdTrj output displays the speed trajectory of the linear axis as it moves toward the target position
in Mode 1, over the specified distance in Mode 2, or during jogging in Mode 3 and 4. In these modes, it
represents the linear speed and shares the same unit asMaxSpdSetPnt or TgtSpd depending on the current
Mode . In other modes, or when the function is deactivated, this output will be zero.
The SpdTrj output is intended solely for display purposes and should not be used to control other functions,
as its reliability for such use is not guaranteed by Halow-Tech. It provides a visual representation of the
expected speed of linear axis, aiding in the monitoring and analysis of system performance.

AccTrj - Acceleration trajectory, <REAL>

The AccTrj output represents the acceleration setpoint of the linear axis as it moves toward the target position
inMode 1, over the specified distance inMode 2, or during jogging inMode 3 and 4. In thesemodes, it reflects
the linear acceleration and uses the same unit as MaxAccSetPnt . In other modes, or when the function is
deactivated, this output will be zero.
The AccTrj output is intended solely for display purposes and should not be used to control other functions,
as its reliability for such use is not guaranteed by Halow-Tech. This output is useful for monitoring and
visualizing the acceleration profile of the axis, helping users ensure that the system operates within the
desired parameters.

16

Busy - Busy signal, <BOOL>

The Busy output indicates whether the internal trajectory generator is currently moving toward a target po-
sition. While the trajectory is in progress and the axis is moving to the new target, this output will be True .
Once the target position is reached, the Busy output switches to False .

While Busy is True , the function block does not respond to new setpoints or impulses at the ExeMov in-
put, preventing any interruptions or changes during the ongoing motion.

However, in Mode 3 and 4 (Jog Mode) and 5 (Speed Control Mode), the Busy output is always False .
This means the user can adjust the TgtSpd inMode 4 or use the push buttons inMode 3 at any time, and the
function block will immediately respond to these changes. This functionality ensures that the system can be
dynamically controlled in these modes without waiting for the completion of a previous motion. See figure 12

Done - Done signal, <BOOL>

The Done output indicates whether the positioning task has been completed. In Modes 1, 2, or 3, as long
as the function block is sending a non-zero speed setpoint to the motor, this output will be False , meaning
the positioning task is still in progress. Once the positioning task is complete, the Done output switches to
True , indicating that the function block is now sending a speed setpoint of exactly 0.0 to the motor.

This output is useful for signaling when the movement is fully completed, allowing the user or the control
system to know when it is safe to proceed with the next operation or to issue new commands. It helps en-
sure that the motor has come to a full stop at the desired position before any further actions are taken. See
figure 12

1 2 3 4 5 6 7

Time (seconds)

0

0.5

1

1.5

2

ExeMov
Mode

1 2 3 4 5 6 7

Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy
done

1 2 3 4 5 6 7

Time (seconds)

2

3

4

5

6

7

8

9

10

PosTrj
ActPos
ParMovAbs.TgtPos

1 2 3 4 5 6 7

Time (seconds)

-600

-400

-200

0

200

400

600 CtrlOut [rpm]
Act Motor Speed

Figure 12: Behaviour of the Busy and Done output.

17

Error - Error conditions of the function block, <Boolean Array of 5 Elements>

The Error output is a boolean array with 5 elements, each indicating a specific error condition that prevents
the function block from executing certain operations. Understanding these elements is crucial for diagnosing
issues and ensuring the function block operates correctly.
The Error output is essential for monitoring the status of the function block and ensuring safe operation. By
checking these elements, users can quickly identify which mode or parameter is causing an issue, allowing
them to correct the problem before attempting to execute new movements or speed commands. This en-
sures that the system operates within safe parameters and helps prevent unintended behavior or damage
to the system. For an overview, see table 3.

• Element 1, Mode 1 Error: If True , no new movement can occur in Mode 1. This indicates that one or
more of the inputs MaxSpdSetPnt , MaxAccSetPnt or JerkSetPnt of the struct ParMovAbs are zero or
negative.

• Element 2, Mode 2 Error: If True , no new movement can occur in Mode 2. This indicates that one or
more of the inputs MaxSpdSetPnt , MaxAccSetPnt or JerkSetPnt of the struct ParMovRel are zero or
negative.

• Element 3,Mode 3 or 4 Error: If True , no new movement can occur inMode 3. This indicates that one
or both of the inputsMaxAccSetPnt or JerkSetPnt of the struct ParJog are zero or negative.

• Element 4, Mode 5 Error: If True , no new rotational speed setpoint can be issued in Mode 4. This
indicates that one or both of the inputs MaxAccSetPnt or JerkSetPnt of the struct ParSpdCtrl are zero
or negative.

• Element 5, Stop condition Error: If True , no new movement or speed setpoint can be issued. This
element remains True if the stop function has been activated and will only reset when the function’s
main output CtrlOut is zero and the Ack input has been activated.

First Element Second Element Third Element Fourth Element Fifth Element
Error Invalid parame-

ters ParMovAbs
Invalid parame-
ters ParMovRel

Invalid parame-
ters ParJog

Invalid parame-
ters ParSpdCtrl

Not acknowl-
edged after stop

Table 3: The different error codes of the MotionXpert function block

FAQ
Can I change the target position while the linear axis is moving in Mode 1 or 2?

While the linear axis is moving in Mode 1 or 2, it is possible to change the target position or distance. How-
ever, the function block will not respond to this change and will continue to move toward the original target.
The function block only reacts to the new setpoints when the Busy output is False .

When can I change the mode?
The mode can technically be changed at any time, but the function block will only implement the change
when the Busy output is False (in Mode 1 or 2), when the motor speed is zero in Mode 4, or when the
Done output is True in Mode 3.

What happens if I set the Enb input to False while the linear axis is moving or the motor speed is not
zero?
If you deactivate the function block by setting the Enb input to False while the linear axis is in motion or the
motor is running at a non-zero speed, the main output of the block will abruptly drop to zero. This sudden
change in motor speed can potentially damage the motor or other mechanical components. Therefore, it’s
important to ensure that the motor has come to a stop or the movement is complete before deactivating the
block.

18

Examples
1 2 3 4 5 6 7

Time (seconds)

0

0.5

1

1.5

2

ExeMov
Mode

1 2 3 4 5 6 7

Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy
done

1 2 3 4 5 6 7

Time (seconds)

2

3

4

5

6

7

8

9

10

PosTrj
ActPos
ParMovAbs.TgtPos

1 2 3 4 5 6 7

Time (seconds)

-600

-400

-200

0

200

400

600 CtrlOut [rpm]
Act Motor Speed

Example 1: Fine-tuning the
frequency drive’s control pa-
rameters.
Adjust the parameters so that
the motor can quickly and ac-
curately match the rotational
speed setpoint.

Example 2: Configure the Mo-
tionXpert function block pa-
rameters.
Step-by-Step guide to config-
ure the block parameters.

Important for all examples: These values are provided solely as examples to illustrate the approach for setting
control parameters. Under no circumstances should these values be directly applied to your machine, not even
as initial starting points. The control parameters must be explicitly adjusted for each machine individually.

19

Fine-tuning the frequency drive’s control parameters
In this examples, we’ll walk you through the steps to configure the technology block for accurate positioning of an
electric axis. This step is essential before proceeding to the next steps, where you’ll tune the control parameters
of the position controller.

The Technology Block calculates the motor’s rotational speed setpoint, which is output through CtrlOut . This
output needs to be connected to a Frequency Drive that controls the motor’s speed. To ensure precise position-
ing, it’s crucial that the motor can accurately follow the rotational speed setpoint provided by CtrlOut . To achieve
this, start by operating the Technology Block in Mode 4. In this mode, you’ll send rotational speed setpoints along
with predefined acceleration and jerk values to the frequency drive.

The first step, described in this example, is to fine-tune the frequency drive’s control parameters so that the
motor can quickly and accurately match the rotational speed setpoint, with minimal overshoot. The motor must
also be capable of following these speed setpoints at the maximum allowable acceleration and jerk rates, main-
taining precision and stability.

Once you’ve ensured that the motor’s speed control is highly responsive and stable, you can proceed to use
the Technology Block in Modes 1, 2, and 3 for precise positioning tasks. This initial setup is key to achieving the
accurate positioning required in these modes.

Important Safety Note for Operating in Mode 4: When operating the Technology Block in Mode 4, it’s
crucial to pay close attention to the position of the linear axis. In Mode 4, rotational speed setpoints are sent to
the motor regardless of the position of the linear axis. This means the motor will follow the speed commands
without considering the current position, which can lead to unintended movements of the axis.
To avoid any potential issues, it’s recommended to perform this step while the linear axis is not yet coupled to the
motor, allowing the motor to spin freely without affecting the axis. This precaution helps prevent any accidental
damage to the mechanical components or misalignment of the system.
If this step is not carefully managed, the motor could drive the axis unexpectedly, leading to possible mechanical
damage or even safety hazards. Ensuring the motor is decoupled or free to rotate during this phase is essential
for a smooth and safe setup process.

The following is an example of the problems that can arise when setting the frequency inverter. At the end of
the example, it is shown how precisely the entire system must react in order to use the controller.

1. Issue of Motor Speed Control in figure 13:

(a) Large Lag Error: The actual motor speed (blue line) lags significantly behind the motor speed set tra-
jectory (black line), indicating poor tracking performance. Themotor takes too long to reach the desired
speed, resulting in a slow response.

(b) No Steady-State Accuracy: The actual motor speed never reaches or maintains the target speed (red
dashed line).

20

1 2 3 4 5 6 7 8

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

1 2 3 4 5 6 7 8

Time (seconds)

0

100

200

300

400

500

600

700

800 CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 13: Frequency Drive with poorly set controller parameters. Large Lag Error and no Steady-State Accuracy.

2. Issue in figure 14:
(a) Large Lag Error: The actual motor speed (blue line) significantly lags behind the set trajectory (black

line) during both the acceleration and deceleration phases. This indicates a delayed response in fol-
lowing the desired speed profile.

(b) Overshoot and Oscillation: After reaching the target speed, the actual motor speed overshoots the
setpoint (red dashed line) and exhibits oscillations. This indicates poor damping and instability in the
speed control, leading to oscillatory behavior instead of smooth convergence to the target speed.

2 4 6 8 10 12 14

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

2 4 6 8 10 12 14

Time (seconds)

-200

0

200

400

600

800

1000

CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 14: Frequency Drive with poorly set controller parameters. Large Lag Error, Overshoot and Oscillation.

3. Issue in figure 15:
(a) Large LagError: The actualmotor speed (blue line) lags behind the set trajectory (black line) during both

the acceleration and deceleration phases. This indicates a delayed response in following the desired

21

speed profile.

0 1 2 3 4 5 6 7

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0 1 2 3 4 5 6 7

Time (seconds)

0

100

200

300

400

500

600

700

800

CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 15: Frequency Drive with poorly set controller parameters. Large Lag Error.

4. Issue in figure 16:
(a) relatively large Lag Error: The actual motor speed (blue line) still lags behind the set trajectory (black

line. This indicates a delayed response in following the desired speed profile.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (seconds)

0

100

200

300

400

500

600

700

800
CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 16: Frequency Drive with poorly set controller parameters. Relatively large Lag Error.

5. Optimal set of controller parameters in figure 17: The lag error between set trajectory (black line) and motor
actual speed (the blue line) is negligibly small, there is no over shoot and no oscillation. steady- state
accuracy is very high.

22

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

0

100

200

300

400

500

600

700

800 CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 17: Frequency Drive with optimal set of controller parameters.

23

Configure the MotionXpert function block parameters
This guide provides detailed instructions on how to set up and configure the Technology Block for precise posi-
tioning tasks of an electric linear axis. To proceedwith the following steps, the frequency drivemust be configured
as described in the previous Example. This setup is a prerequisite for successful tuning of the position control
parameters.
1. General Informations

• Cyclic Interrupt OB Setup: Ensure that the Technology Block is called within a cyclic interrupt OB in
your PLC. The feedback for the actual position must be read at least as frequently as the cycle time of
the cyclic interrupt OB.

• Sampling Time: The OB’s cycle time should be relatively fast, depending on the required accuracy and
motor dynamics. A sampling time of 1 to 5 milliseconds is a good starting point.

• Communication with the Frequency Drive: The Technology Block only calculates the speed setpoint for
the frequency drive. Control and status words for communication with the drive must be programmed
separately by the user. The speed setpoint calculated at the CtrlOut output should be sent directly to
the frequency drive without modification.

2. Define Units
• Consistency in Units: Before configuring the block, decide on the units you will use for the system.
These units must remain consistent throughout the configuration.

For example, if you choose millimeters for the linear axis, then all related variables should be in mil-
limeters:
Actual Position [mm], Target Position [mm], Speed Setpoint [mms], Acceleration Setpoint [mms2], and Jerk
[mms3].

For motor parameters, you might use rpm:
Motor Target Speed [rpm], Motor Acceleration [rpms], Motor Jerk [rpms2].

• Other Unit Options: You can choose other units, such asmeters, centimeters, micrometers for the linear
axis, or rad/s or percentage of nominal motor speed for the motor. The key is to select a unit system
and maintain consistency across all parameters and modes.

3. Set General Parameters
• Sample Time: Enter the OB’s cycle time (in seconds) into the SampleTime input.
• Max and Min Output: Define the maximum and minimum speed the Technology Block can output using
MaxOut andMinOut , for example, 1500 rpm maximum and −1500 rpm minimum.

4. Configure Setpoints for Mode 1

• Mode 1 Setup: Switch the block to Mode 1. Using the setpoint structure ParMovAbs , define a target
position with corresponding speed, acceleration, and jerk setpoints. Ensure that all setpoints (speed,
acceleration, jerk) are greater than zero.

5. Set Kp and Target Accuracy
• Kp Setting: Initially, enter a small value for Kp of the CtrlPar structure.
• Define Accuracy Window: Set the accuracy window usingWindow input in the same units chosen for
the linear axis (e.g., 0.2mm).

• Tune Time: Enter a value in seconds for TuneTime (e.g., 0.3s).
• Other Control Parameters: You can leave other control parameters at zero for now; they will be adjusted
later.

6. Activate the Block and Execute Movement
• Block Activation: Activate the block by setting Enb to True . Trigger a movement by sending a pulse to
the ExeMov ‘ input and observe the linear axis movement.

24

• The goal at this stage is to ensure that the actual position and the generated position trajectory (PosTrj out-
put) are parallel. Do not focus on target accuracy at this point. See figure 18.

Figure 18: Example with Kp to small! (Kp = 10, Window = 0.2mm, TuneTime = 0.3s)

7. Kp Tuning
• Incremental Kp Adjustments: Gradually increase the Kp value. After each increment, execute a new
movement by defining an appropriate target position and sending a pulse to ExeMov .

• Objective: Continue this process until the position trajectory (PosTrj) and the actual position are parallel,
indicating proper tuning. see figures 19, 20 and 21.

Figure 19: Kp increased to 20, still small! (Kp = 20, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0, Window =
0.2mm, TuneTime = 0.3s)

25

0 2 4 6 8 10 12 14 16

Time (seconds)

0

0.2

0.4

0.6

0.8

1

Enb
ExeMov

0 2 4 6 8 10 12 14 16

Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy
done

0 2 4 6 8 10 12 14 16

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0 2 4 6 8 10 12 14 16

Time (seconds)

0

50

100

150

200

250 CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 20: Kp increased to 50, still small! (Kp = 50, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0, Window =
0.2mm, TuneTime = 0.3s)

1 2 3 4 5 6 7

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

1 2 3 4 5 6 7

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

1 2 3 4 5 6 7

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

1 2 3 4 5 6 7

Time (seconds)

0

100

200

300

400

500

CtrlOut [rpm]
Act Motor Speed [rpm]

X 3.83
Y 520.526

Figure 21: Kp increased to 200, ready for next step! (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0,
Window = 0.2mm, TuneTime = 0.3s)

8. Determine the Positive Feedforward Parameter
• Execute a Positive Movement: Run a positive movement of the linear axis.
• Measure Motor Speed: At a point where the actual position and the position trajectory (PosTrj) are
parallel, read the motor speed.

• Calculate Gain: Divide the motor speed by the set speed value (MaxSpdSetPnt of the structure Par-
MovAbs). The result is the value you should enter into GainFwdSpdCtrl of the structure CtrlPar . In

26

the example shown in figure 22. The MaxSpdSetPnt was set to 5
mm
s . The motor speed is 520.52rpm.

The value for GainFwdSpdCtrl is then calculated by

GainFwdSpdCtrl =
520.52

5
= 104.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

0

100

200

300

400

500

CtrlOut [rpm]
Act Motor Speed [rpm]

X 3.62
Y 553.881

Figure 22: Adjusted Feedfordward parameters (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 104.1, GainBwdSpdCtrl = 0.0,
Window = 0.2mm, TuneTime = 0.3s)

9. Determine the Negative Feedforward Parameter
• Repeat Step 8: Perform the same process as in Step 8, but with a negative movement of the linear axis.
• Calculate and Set Gain: Write the resulting value into GainBwdSpdCtrl of the strucutre CtrlPar .

10. Fine-Tune Feedforward Parameters (Optional)
• Execute a Movement: Run a movement using the Kp = 20 value and the determined feedforward
parameters.

• Analyze the Motion: The movement should resemble the ideal trajectory shown in reference images
(e.g., similar to figure 21).

• Refine GainFwdSpdCtrl : Determine the positive feedforward gain again by observing the highest motor
speed during the movement. Divide this by the set speed value (MaxSpdSetPnt) and update GainFwd-
SpdCtrl with this value. See figure 22.

GainFwdSpdCtrl = 553.88

5
= 110.7

• Refine GainBwdSpdCtrl : Repeat the process with a negative movement to refine GainBwdSpdCtrl .

27

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

0

100

200

300

400

500
CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 23: (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 104.1, GainBwdSpdCtrl = 110.7, Window = 0.2mm, TuneTime = 0.3s)

11. Adjust Ki Parameter
• Monitor Signals: Observe the time between when the Busy signal is reset and when the Done signal is
set.

• Increase Ki : Gradually increase the Ki value and minimize the TuneTime to achieve the desired speed
and responsiveness.

12. Finalize the Position Controller Setup
• Optimal Configuration: Once the Kp , feedforward parameters, and Ki are tuned, the position controller
is optimally set.

• Run Movements in Modes 1, 2, and 3: You can now move the linear axis in Modes 1, 2, and 3 with any
target positions, speeds, accelerations, and jerks that your mechanics and motor can handle, without
needing to adjust the CtrlPar values again.

• By following these steps, you ensure that your Technology Block is finely tuned for accurate and re-
sponsive control, enabling smooth and precise operation of the electric axis in various modes.

28

	MotionXpert
	Description
	Block diagram
	Inputs
	Outputs
	FAQ
	Examples
	Fine-tuning the frequency drive's control parameters
	Configure the MotionXpert function block parameters

