
MotionProX
The Ultimate Precision Motion Con-
trol Solution for Electric Axes

Contents
MotionProX 1

Description . 1
Block diagram . 2
Inputs . 2
Outputs . 15
FAQ . 18
Examples . 18

Fine-tuning the frequency drive’s control parameters . 19
Configure the MotionProX function block parameters . 23

Description
The MotionProX controller is a versatile and advanced technological PLC function block designed for precise
position, speed and acceleration control of an electrical axis. This function plays a crucial role in determining
the desired rotational speed (setpoint) for an electrical motor, ensuring that the linear axis achieves the specified
position, speed and acceleration set values, depending on the selected operational mode.

This function can be operated in various modes, including absolute movement mode, relative movement mode,
jog mode and motor speed mode. The motor speed control mode is particularly suited for applications where
position feedback to the PLC program is not required.

Each mode is tailored to specific motion control needs, providing flexibility and precision in a wide range of ap-
plications. Additionally, the function is equipped with a stop input, allowing for an immediate motor stop with an
adjustable deceleration rate at any given moment, ensuring safety and control.

The MotionProX function is designed with separate inputs for setpoints of position, speed, acceleration and
jerk for each operational mode. This allows for highly customized and flexible control configurations tailored to
specific application needs.

At the core of this function is an internal trajectory generator, which enables highly accurate and smooth control of
the linear axis’s position, speed and acceleration. This sophisticated technology ensures optimal performance,
making it an essential component in advenced motion control systems.

The diagram illustrates how the MotionProX function block integrates into the overall control system, highlighting
its role in achieving precise and reliable position control of the linear axis.

Rotational speed feedback

Position feedback

Linear axis

Electrical motor

CtrlOut

Figure 1: Integration of the function into the overall control system.

Compatible with various PLC platforms like Siemens S7, Siemens TIA Portal, Rockwell Studio AIO, Rockwell
RSLogix 5000, Rexroth IndraWorks, B&R Automation Studio, and Beckhoff TwinCAT, MotionProX provides the
same high performance on any platform.

Block diagram

Reinit

GenPar

ParMovAbs

ParMovRel

ParJog

ParSpdCtrl

ParStop

CtrlPar

ExeMov

JogFw

JogBw

Stop

Ack

Enb

CtrlOut

Mode

ActPos

PosTrj

SpdTrj

AccTrj

Busy

Done

Error

Inputs
GenPar

SampleTime <REAL>
MaxOut <REAL>
MinOut <REAL>
SupImpCtrl <REAL>
Digits <INT>

2

GenPar → SampleTime - Calling frequency of the controller, <REAL>

The sample time, in seconds, of the cyclic interrupt task of the PLC at which the function is running. A higher
sampling frequency allows for more precise control.

GenPar → MaxOut - Maximum Output, <REAL>

Is used to define the upper limit of the CtrlOut output, which represents the speed setpoint for the electric
motor.

GenPar → MinOut - Minimum Output, <REAL>

Is used to define the lower limit of the CtrlOut output to a specific value.

GenPar → SupImpCtrl - Suppress internal trajectory generator, <REAL>

The SupImpCtrl input is intended for applications where multiple axes need to be synchronized in position
or speed or where the torque of the electric motor must be manipulated by a superimposed controller. This
input allows an external controller to manipulate the position or speed of the linear axis or the torque of the
motor, enabling precise coordination and adaptive control in complex systems.

The schematic of the signal flow, as depicted in figure 2, illustrates how the SupImpCtrl input interacts with
other components within the control system, ensuring that the external controller’s commands are effectively
integrated into the overall motion control process.

Figure 2: Schematic of the controller signal flow

GenPar → Digits - Resolution of the calculated movement trajectory, <INT>

The Digits input is an integer value that determines the resolution of the decimal places for the calculated
movement trajectories. This setting controls the precision of the trajectory calculations, ensuring accurate
motion control. A value of 4 is recommended, which provides a good balance between precision and com-
putational efficiency, allowing the function to generate smooth and accurate movement paths.

ParMovAbs
TgtPos <REAL>
MaxSpdSetPnt <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

3

ParMovAbs → TgtPos - Position setpoint for absolute movement, <REAL>

The input allows users to specify the desired target position for the linear axis. It can be defined in any unit
appropriate for the application (e.g. meters, centimeters, millimeters, micrometer). When the ExeMov input
recognizes a rising edge, the function generates a trajectory from the current position to the specified target.
The internal position controller ensures that the linear axis follows this trajectory accurately.

To operate the function in absolute move mode, the Mode input must be configured with a value of 1. This
setting ensures that the function interprets the ParMovAbs input as setpoint.
Important: It is essential to understand that any changes of the TgtPos , MaxSpd , MaxAccSetPnt and Jerk-
SetPnt during axis movement are internally ignored by the function block. The function block responds to
changes only when PosTrj matches TgtPos . The Busy ouput serves as an indicator of the block’s readiness:
When the Busy output of the block is logicaly True , it indicates that the axis is in motion and the controller
will not respond to new setpoints. Conversely, if it is logically False , the axis is in steady state, allowing the
controller to react to new setpoints. See figure 3.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

2

4

6

8

10 PosTrj [[mm]
ActPos [mm]
ParMovAbs.TgtPos [mm]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

-500

0

500
CtrlOut [rpm]

Figure 3: Position trajectory, actual position and busy signal during movement.

ParMovAbs → MaxSpdSetPnt - Maximum speed setpoint for absolute movement, <REAL>

This input sets the maximum allowable speed of the linear axis during the movement. It is defined in the
same unit as the TgtPos input, per second. This parameter ensures that the linear axis moves at a controlled
speed while reaching the target position defined by TgtPos . This sets the top speed for the linear axis during
movement. See figure 4.

4

0.5 1 1.5 2 2.5 3
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3
Time (seconds)

0

5

10

15

SpdTrj [mm/s]
ParMovAbs.MaxSpdSetPnt [mm/s]

0.5 1 1.5 2 2.5 3
Time (seconds)

-50

0

50

AcccTrj [mm/s^2]
ParMovAbs.MaxAccSetPnt[mm/s^2]

0.5 1 1.5 2 2.5 3
Time (seconds)

5

10

15
PosTrj [mm]
ActPos [mm]
ParMovAbs.TgtPos [mm]

Figure 4: Upper limit of the speed and acceleration trajectory.

ParMovAbs → MaxAccSetPnt - Maximum acceleration for absolute movement, <REAL>
This input determines the maximum allowable acceleration of the linear axis during the movement. It is
measured in the same unit as TgtPos per second squared. This parameter needs to be customized based
on the specific system requirements. MaxAccSetPnt plays a critical role in regulating the acceleration of the
linear axis as it follows the trajectory towards the target position.

ParMovAbs → JerkSetPnt - Jerk setpoint for absolute movement, <REAL>

JerkSetPnt controls the abruptness or smoothness of motion by regulating the rate of change of acceleration.
It is measured in the same unit as TgtPos per second cubed. Adjusting JerkSetPnt allows users to customize
the motion profile according to their desired level of abruptness or smoothness. For example, if the maxi-
mum acceleration needs to be achieved within half a second, the JerkSetPnt value should be set to double
the maximum acceleration value. See figure 5.

Setting a jerk value as a setpoint is important for controlling the smoothness of acceleration and decel-
eration transitions. By managing the rate at which acceleration changes, users can prevent sudden, harsh
movements that could cause mechanical wear or instability in the system. This ensures a smoother and
more controlled operation, which is especially beneficial in applications where precision and mechanical
longevity are critical.

5

Figure 5: Movements with different jerk setpoints.

ParMovRel
Distance <REAL>
MaxSpdSetPnt <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

ParMovRel → Distance - Distance for the relative movement, <REAL>
The Distance input defines the distance the linear axis should move in relative movement mode, similar
to the TgtPos input of the struct ParMovAbs in absolute movement mode, but with the key difference that
it specifies the relative distance to be traveled rather than an absolute position. A positive value causes
forward movement, while a negative value results in backward movement. The motion is initiated when a
rising edge is detected on the ExeMov input. It is important to note that any changes to the parameters set
by Distance during the motion will not be processed by the function until the current movement is completed.
To operate the function in relative move Mode, the Mode input must be configured with a value of 2. This
setting ensures that the function interprets the Distance input as the setpoint. See figure 6.

6

1 2 3 4 5 6
Time (seconds)

0

0.5

1

1.5

2

ExeMov
Mode

1 2 3 4 5 6
Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy

1 2 3 4 5 6
Time (seconds)

-5

0

5

PosTrj [mm]
ActPos [mm]
ParMovRel.Distance [mm]

1 2 3 4 5 6
Time (seconds)

-500

0

500 CtrlOut [rpm]

Figure 6: Movements in relative mode.

ParMovRel → MaxSpdSetPnt - Maximum speed setpoint for relative movement, <REAL>

See the description ofMaxSpdSetPnt of the structure ParMovAbs .

ParMovRel → MaxAccSetPnt - Maximum acceleration setpoint for relative movement, <REAL>

See the description ofMaxAccSetPnt of the structure ParMovAbs .

ParMovRel → JerkSetPnt - Jerk setpoint for relative movement, <REAL>

See the description of JerkSetPnt of the structure ParMovAbs .

ParJog
TgtSpd <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>
EnbPosCtrl <REAL>

ParJog → TgtSpd - Target speed setpoint, <REAL>

When theMode input is set to 3, the function operates in Jog Mode. In this mode, the linear axis moves for-
ward with the configured speed, acceleration, and jerk as long as the JogFw input is True . If the JogBw input
is activated, the linear axis moves backward. When JogFw and JogBw is set to False , the linear axis decel-
erates to a stop using the configured acceleration and jerk. This input defines the speed at which the linear
axis moves while the JogFw or JogBw input is True , ensuring precise control over the jogging speed during
manual operation. See figure 7.

7

1 2 3 4 5 6
Time (seconds)

0

1

2

3
JogFw
JogBw
Mode

1 2 3 4 5 6
Time (seconds)

-5

0

5

SpdTrj [mm/s]
ParJog.TgtSpd [mm/s]

1 2 3 4 5 6
Time (seconds)

-6

-4

-2

0

2

PosTrj [mm]
ActPos [mm]
ParMovRel.Distance [mm]

1 2 3 4 5 6
Time (seconds)

-500

0

500 CtrlOut [rpm]

Figure 7: Movements in jog mode.

ParJog → MaxAccSetPnt - Maximum acceleration setpoint for jog mode, <REAL>

This input determines the maximum allowable acceleration of the linear axis during the movement in Jog
Mode. It is measured in the same unit as Actual Position per second squared.

ParJog → JerkSetPnt - Jerk setpoint for jog mode, <REAL>

JerkSetPnt controls the abruptness or smoothness of motion in Jog Mode by regulating the rate of change of
acceleration. It is measured in the same unit as actual position per second cubed. Adjusting JerkSetPnt al-
lows users to customize the motion profile according to their desired level of abruptness or smoothness.
Setting a jerk value as a setpoint is important for controlling the smoothness of acceleration and deceleration
transitions. By managing the rate at which acceleration changes, users can prevent sudden, harsh move-
ments that could cause mechanical wear or instability in the system. This ensures a smoother and more
controlled operation, which is especially beneficial in applications where precision and mechanical longevity
are critical.

ParJog → EnbPosCtrl - Enable position controller, <REAL>

This input allows the user to enable or disable closed-loop position control in Jog Mode. When this input
is set to true, the linear axis operates in closed-loop control, meaning that the position feedback is actively
used to maintain accurate position control during jogging operations. If this input is set to false, the linear
axis operates in feedforward mode only, with no position feedback control, relying solely on the predefined
speed and acceleration settings. This provides flexibility depending on whether precise position control or
simple open-loop control is required during Jog Mode.

ParSpdCtrl
TgtSpd <REAL>
MaxAccSetPnt <REAL>
JerkSetPnt <REAL>

8

ParSpdCtrl → TgtSpd - Target of speed control mode, <REAL>

The TgtSpd input is used to specify the target speed when the function block is configured in Motor Speed
Mode (Mode = 4). In this mode, the user can send a speed setpoint to the motor, which is executed with
the configured acceleration and jerk parameters. The function generates and sends a motor speed setpoint
independently of the linear axis’s position, allowing direct control of the motor’s rotational speed.

Whether you’re managing conveyors, pumps, fans, or other motion-driven applications, MotionProX en-
sures smooth, safe, and accurate motor speed transitions, protecting both your motor and mechanical com-
ponents from excessive stress.

The unit for this input must be in a rotational speed format, such as RPM (revolutions per minute), rad/s
(radians per second), or as a percentage of the motor’s nominal speed. This input provides precise control
over the motor’s speed, making it ideal for applications where maintaining a specific motor speed is critical,
regardless of the linear axis position.

In Motor Speed Mode, the user can change the target speed at any time. Any change to the TgtSpd in-
put is immediately recognized by the function and is implemented using the configured acceleration and
jerk parameters. This allows for real-time adjustments to the motor speed, ensuring responsive and precise
control in dynamic applications. See figure 8.

1 2 3 4 5 6 7

Time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

Enb
Mode

1 2 3 4 5 6 7

Time (seconds)

-100

0

100

200

300

400

500 CtrlOut [rpm]
ParSpdCntrl.TgtSpd [rpm]

Figure 8: Movements speed control mode.

9

ParSpdCtrl → MaxAccSetPnt - Maximum acceleration for speed control mode, <REAL>

The MaxAccSetPnt input of the ParSpdCtrl struct defines the maximum motor acceleration when the func-
tion block is operating in Motor Speed Mode (Mode = 4). The unit for this input can be rpm/s, rad/s², or as
a percentage of the motor’s nominal speed per second. This input controls the rate at which the motor can
increase its speed, ensuring that acceleration remains within safe and desired limits.

Please note that changes to this input are only possible when the motor is running at a constant speed.
During the transition from one target speed (TgtSpd) to another, any changes to theMaxAccSetPnt input will
not be processed by the function.

ParSpdCtrl → JerkSetPnt - Maximum jerk for speed control mode, <REAL>

This input defines the jerk of the motor during speed changes in Motor Speed Mode (Mode = 4). Jerk is the
rate of change of acceleration or deceleration and is measured in units such as rpm/s², rad/s³. It represents
how quickly the motor’s acceleration increases or decreases over time.

Setting a jerk value as a setpoint is important for controlling the smoothness of acceleration and decel-
eration transitions. By managing the rate at which acceleration changes, users can prevent sudden, harsh
movements that could cause mechanical wear or instability in the system. This ensures a smoother and
more controlled operation, which is especially beneficial in applications where precision and mechanical
longevity are critical.

ParStop
DecSetPnt <REAL>

ParStop → DecSetPnt - Deceleration of the motor stop, <REAL>

The function block includes a stop feature that allows the motor to be halted immediately, regardless of the
current mode. As soon as a rising edge is detected on the Stop input, the function triggers a stop ramp to
bring the motor to zero speed. The deceleration during this stop is defined by the DecSetPnt input, which
can be configured in units such as [rpm/s], [rad/s²], or as a percentage of the nominal speed per second.
After the stop input is activated, normal operation of the function can only resume once the acknowledge,
Ack , input is activated. This ensures that the system is properly reset and ready for continued use after an
emergency or controlled stop. See figure 9.

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

0.5

1

1.5

2

Mode

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

0.2

0.4

0.6

0.8

1

Sop
ExeMov

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

2

4

6

PosTrj
ActPos
ParMovAbs.TgtPos

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

200

400

600
CtrlOut

Figure 9: Maximum deceleration of the stop trajectory.

CtrlPar
Kp <REAL>
Ki <REAL>
GainFwdSpdCtrl <REAL>
GainBwdSpdCtrl <REAL>
ModeIntCntrl <REAL>
Window <REAL>
TuneTime <REAL>

CtrlPar → Kp - Controller P-Factor, <REAL>

It represents the amplification factor of the P-controller within the position controller. A higher Kp value can
enhance control accuracy. However, caution is advised: setting the Kp value excessively high may render
the closed-loop system unstable. For optimal results and to maintain system stability, it is recommended
to initiate with a modest Kp value and incrementally adjust upwards to achieve the desired precision. See
example 2 for optimal adjustment.

CtrlPar → Ki - Controller I-Factor, <REAL>
Ki stands for the integration factor of the I-controller within the position controller. A Ki value set to zero
effectively deactivates the I-controller. While a higher Ki value results in swifter error integration, enhancing
overall accuracy, it can also introduce increased oscillations in the closed-loop system. For best perfor-
mance, it is advisable to commence with a low Ki value and gradually increase it until the desired accuracy
level is reached, balancing precision with system stability. See example 2 for optimal adjustment.

CtrlPar → GainFwdSpdCtrl - Positive speed feedforward, <REAL>

GainFwdSpdCtrl is a system parameter that adds a constant value for positive velocities to the control signal,
improving trajectory tracking. It reduces the error signal and facilitates smoother following of the desired
trajectory. The optimal positive feedforward value depends on the hardware and system dynamics, which
can be determined through measurement and analysis, as illustrated in example 2.

11

CtrlPar → GainBwdSpdCtrl - Negative speed feedforward, <REAL>

GainBwdSpdCtrl is a systemparameter that adds a constant value for negative velocities to the control signal,
improving trajectory tracking. It reduces the error signal and facilitates smoother following of the desired
trajectory. The optimal positive feedforward value depends on the hardware and system dynamics, which
can be determined through measurement and analysis, as illustrated in example 2.

CtrlPar → ModeIntCntrl - Mode selection for internal integral controller, <REAL>

This input determines the behavior of the I-Controller. When set to False , the I-Controller remains con-
tinuously active. If set to True , the I-Controller operates only in the steady state, deactivating during the
linear axis movement. We advise setting this input to True , as allowing the I-Controller to function solely in
the steady state often provides superior stability and accuracy for linear axes. This approach typically mini-
mizes, if not eliminates, significant overshoots and, by enabling an increase in the Ki factor, greatly enhances
accuracy.

CtrlPar → Window - Tolerance window of the target position, <REAL>

TheWindow input is used to define a positional tolerance band around the target position TgtPos of the Par-
MovAbs structure. When the actual position ActPos of the linear axis is within half of theWindow value from
the target position and remains within this range for at least the specified TuneTime (which is configurable in
seconds), the function block will send a speed setpoint of exactly 0.0 to the motor.

This functionality is crucial for achieving precise positioning. It ensures that when the axis gets close enough
to the target position, the motor is gently brought to a complete stop, preventing overshoot and ensuring the
axis remains within the desired positional accuracy. In figure 10 you can differentiate between three states:
1. Window and Positioning: As the actual position (black line) approaches the target position (red dashed

line), the difference between them becomes smaller than half of the Window value (illustrated by the
blue dashed lines).

2. TuneTime Activation: Once the actual position stays within thisWindow range for a duration of at least
TuneTime (e.g. 0.5 seconds, as indicated on the graph), the function block signals the motor to reduce
speed to exactly 0.0 (as shown in the CtrlOut graph).

3. Final Positioning: This results in the motor coming to a smooth and controlled stop.
This feature is essential for applications requiring high positional accuracy, as it prevents oscillations around
the target position and ensures a stable final position.

12

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

0.2

0.4

0.6

0.8

1

ExeMov
Mode

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

5.9

6

6.1

PosTrj
ActPos
ParMovAbs.TgtPos

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

1

2

3

4

5

busy

0.5 1 1.5 2 2.5 3 3.5
Time (seconds)

0

50

100

CtrlOut

Window=0.2

TuneTime=0.5 sec

Figure 10: Behaviour of the tolerance window and tune time.

CtrlPar → TuneTime - Amount of time in tolerance window, <REAL>
The TuneTime input specifies the minimum amount of time that the actual position ActPosmust remain within
the definedWindow around the target position TgtPos before the function block sends a zero-speed setpoint
to the motor. This time parameter is configurable in seconds.

The purpose of the TuneTime input is to ensure that the axis has settled within the acceptable positional
tolerance before bringing the motor to a complete stop. By requiring the position to stay within the Win-
dow for a specified duration, TuneTime helps to prevent premature stopping due to transient conditions or
small oscillations. This results in more stable and precise final positioning, reducing the likelihood of over-
shoot or drift after the motor has stopped.

Enb - Turn controller on or off, <BOOL>
This input controls the activation or deactivation of the function. When the input signal is turned off False ,the
function no longer responds to changes in the setpoints and does not generate any trajectory. Themonitoring
signal PosTrj reflects the current position, while the other monitoring signals SpdTrj and AccTrj are set to zero.
when the function is deactivated, the CtrlOut is set to zero, indicating that there is no movement caused by
the controller. For an overview, see table 1.

CtrlOut PosTrj SpdTrj AccTrj
Enb =True calculated based on

the position control
algorithm

calculated by posi-
tion trajectory gener-
ator

calculated by speed
trajectory generator

calculated by ac-
celeration trajectory
generator

Enb =False 0.0 reflects current posi-
tion ActPos

0.0 0.0

Table 1: Behavior of the output signals depending on the Enb input

13

Mode - Operation Mode Selection, <INT>

The function offers four different modes, as seen in table 2, which can be selected using theMode input:
• Mode = 1: In this mode, the function block operates as an absolute movement position controller. The
active set of parameters is ParMovAbs The user can define a target position, and upon detecting a
rising edge on the ExeMov input, the linear axis moves to this target position.

• Mode = 2: In this mode, the function block acts as a relative movement position controller. The active
parameter set is ParMovRel . The user can define a distance to move relative to the current position.
When a rising edge is detected on the ExeMov input, the linear axis moves by the specified distance.

• Mode = 3: This mode enables manual jog movements. The active parameter set is ParJog . In this
mode, the user can executemanual movements using two boolean inputs, JogFw for forwardmovement
and JogBw for backward movement. The linear axis moves forward or backward according to the
ParJog parameters as long as one of these inputs is active.

• Mode = 4: In this mode, the function block is configured to send a rotational speed setpoint to the
motor. The active parameter set is ParSpdCtrl . The user can send a specific rotational speed set-
point with configurable acceleration and jerk to the motor. In this mode, the motor rotational speed is
controlled independently of the linear axis position.

1 2 3 4

Mode Absolute Move Pos.
Control

Relative Move Pos.
Control

PushButton Jog
Move

Motor Speed Control

Table 2: The different modes of the MotionProX function block

ActPos - Actual position, <REAL>

The input represents the current measured position of the linear axis. It is used in the error signal calculation
of the position controller. It should be provided in the same unit as TgtPos or Distance dependend of the
selected mode.

ExeMov - Execute Movement, <BOOL>
The ExeMov input is used to initiate movement in eitherMode 1 (absolute position control) orMode 2 (relative
position control). When a rising edge is detected on this input, the function block starts the movement based
on the current mode settings. InMode 1, the linear axis begins moving toward the specified target position,
while inMode 2, it moves by the defined relative distance. This input effectively serves as the start command
for executing the programmed motion.

JogFw - Input for forward movement in jog mode, <BOOL>

In Mode 4, the JogFw input controls the forward movement of the linear axis. As long as this input is active
True , the axis moves forward according to the parameters defined in ParJog When the JogFw input is
deactivated (switches from True to False), the function stops the linear axis using the same parameters,
ensuring a smooth and controlled stop. This input is essential for manual jogging operations, allowing the
user to control forward movement with precision. See figure 7.

JogBw - Input for backward movement in jog mode, <BOOL>

The JogBw input controls the backward movement of the linear axis in Mode 4. When this input is active
True , the axis moves backward according to the parameters defined in ParJog . If the JogBw input is
deactivated (switches from True to False), the function stops the linear axis using the same parameters,
ensuring a smooth and controlled stop. This input is crucial for manual jogging operations, providing precise
control over backward movement. See figure 7.

14

Stop - Safety stop in all modes, <BOOL>

The Stop input is a critical safety and control feature that overrides all other modes of operation. Regardless
of the current mode the function block is in, when a rising edge is detected on the Stop input, the function
immediately sends a zero-speed setpoint to the motor. This command is executed with a configurable decel-
eration rate, ensuring the motor comes to a controlled and safe stop. This input is essential for emergency
stops or situations where an immediate halt of the motor is required, providing a reliable way to quickly bring
the system to a stop. See figure 7.

Ack - Safety stop in all modes, <BOOL>

The Ack input is used to reset the function block after a stop command has been executed via the Stop input.
Once the motor has been stopped, the function block is locked, preventing any further operations until a
rising edge is detected on the Ack input. This input serves as a safety feature, ensuring that the system
cannot resume normal operation until the stop event has been acknowledged by the user. It allows the user
to verify and confirm that the system is ready to continue, ensuring controlled and safe operation after a stop
condition.

Outputs
CtrlOut - Control Signal, <REAL>

The CtrlOut output is the main output of the function block, responsible for providing the motor speed set-
point. This output ensures that the linear axis reaches the desired position, or the motor achieves the target
motor speed, or safely stops the motor, depending on the selected mode. The unit of this output could be
defined in rpm, rad/s or as percentage of the motor’s nominal speed.
The CtrlOut signal must be connected to a motor speed controller, such as a frequency drive, which trans-
lates the setpoint into the actual motor speed. CtrlOut is essential for translating the function block’s control
commands into motor speed, making it a crucial link between the control system and the motor drive.

PosTrj - Position trajectory, <REAL>

The PosTrj output displays the position trajectory of the linear axis as it moves toward the target position in
Mode 1 or along the specified distance in Mode 2. When the function block is deactivated by setting Enb to
False , is inMode 4, or during the stop function, this output shows the current position of the linear axis. The
unit of PosTrj is the same as that used for TgtPos or Distance dependend on the currentMode .
This output is intended solely for display purposes and should not be used to control other functions, as
its reliability for such purposes is not guaranteed by Halow-Tech. It provides a visual representation of the
expected or current position of the axis, aiding in monitoring the system’s operation. See figure 3, figure 6
or 7.

SpdTrj - Speed trajectory, <REAL>

The SpdTrj output displays the speed trajectory of the linear axis as it moves toward the target position in
Mode 1, over the specified distance in Mode 2, or during jogging in Mode 3. In these modes, it represents
the linear speed and shares the same unit as MaxSpdSetPnt or TgtSpd depending on the current Mode . In
Mode 4, or when the function is deactivated, this output will be zero.
The SpdTrj output is intended solely for display purposes and should not be used to control other functions,
as its reliability for such use is not guaranteed by Halow-Tech. It provides a visual representation of the
expected speed of linear axis, aiding in the monitoring and analysis of system performance. See figure 4,
figure 5 or 7.

15

AccTrj - Acceleration trajectory, <REAL>

The AccTrj output represents the acceleration setpoint of the linear axis as it moves toward the target position
inMode 1, over the specified distance inMode 2, or during jogging inMode 3. In these modes, it reflects the
linear acceleration and uses the same unit asMaxAccSetPnt . The AccTrj output is intended solely for display
purposes and should not be used to control other functions, as its reliability for such use is not guaranteed by
Halow-Tech. It provides a visual representation of the expected speed of linear axis, aiding in the monitoring
and analysis of system performance. See figure 4 and figure 5.

Busy - Busy signal, <BOOL>

The Busy output indicates whether the internal trajectory generator is currently moving toward a target po-
sition. While the trajectory is in progress and the axis is moving to the new target, this output will be True .
Once the target position is reached, the Busy output switches to False .

While Busy is True , the function block does not respond to new setpoints or impulses at the ExeMov in-
put, preventing any interruptions or changes during the ongoing motion.

However, inMode 3 (Jog Mode) and 4 (Speed Control Mode), the Busy output is always False . This means
the user can adjust the TgtSpd inMode 4 or use the push buttons inMode 3 at any time, and the function block
will immediately respond to these changes. This functionality ensures that the system can be dynamically
controlled in these modes without waiting for the completion of a previous motion. See figure 11

Done - Done signal, <BOOL>

The Done output indicates whether the positioning task has been completed. In Modes 1, 2, or 3, as long
as the function block is sending a non-zero speed setpoint to the motor, this output will be False , meaning
the positioning task is still in progress. Once the positioning task is complete, the Done output switches to
True , indicating that the function block is now sending a speed setpoint of exactly 0.0 to the motor.

This output is useful for signaling when the movement is fully completed, allowing the user or the control
system to know when it is safe to proceed with the next operation or to issue new commands. It helps en-
sure that the motor has come to a full stop at the desired position before any further actions are taken. See
figure 11

16

Error - Error conditions of the function block, <Boolean Array of 5 Elements>

The Error output is a boolean array with 5 elements, each indicating a specific error condition that prevents
the function block from executing certain operations. Understanding these elements is crucial for diagnosing
issues and ensuring the function block operates correctly.
This output is essential for monitoring the status of the function block and ensuring safe operation. By check-
ing these elements, users can quickly identify which mode or parameter is causing an issue, allowing them
to correct the problem before attempting to execute new movements or speed commands. This ensures
that the system operates. For an overview, see table 3.

• Element 1, Mode 1 Error: If True , no new movement can occur in Mode 1. This indicates that one or
more of the inputs MaxSpdSetPnt , MaxAccSetPnt or JerkSetPnt of the struct ParMovAbs are zero or
negative.

• Element 2, Mode 2 Error: If True , no new movement can occur in Mode 2. This indicates that one or
more of the inputs MaxSpdSetPnt , MaxAccSetPnt or JerkSetPnt of the struct ParMovRel are zero or
negative.

• Element 3, Mode 3 Error: If True , no new movement can occur in Mode 3. This indicates that one or
both of the inputsMaxAccSetPnt or JerkSetPnt of the struct ParJog are zero or negative.

• Element 4, Mode 4 Error: If True , no new rotational speed setpoint can be issued in Mode 4. This
indicates that one or both of the inputs MaxAccSetPnt or JerkSetPnt of the struct ParSpdCtrl are zero
or negative.

• Element 5, Stop condition Error: If True , no new movement or speed setpoint can be issued. This
element remains True if the stop function has been activated and will only reset when the function’s
main output CtrlOut is zero and the Ack input has been activated.

Element 1 =True Element 2 =True Element 3 =True Element 4 =True Element 5 =True
Error Invalid parame-

ters ParMovAbs
Invalid parame-
ters ParMovRel

Invalid parame-
ters ParJog

Invalid parame-
ters ParSpdCtrl

Not acknowl-
edged after stop

Table 3: The different error codes of the MotionProX function block

1 2 3 4 5 6 7

Time (seconds)

0

0.5

1

1.5

2

ExeMov
Mode

1 2 3 4 5 6 7

Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy
done

1 2 3 4 5 6 7

Time (seconds)

2

3

4

5

6

7

8

9

10

PosTrj
ActPos
ParMovAbs.TgtPos

1 2 3 4 5 6 7

Time (seconds)

-600

-400

-200

0

200

400

600 CtrlOut [rpm]
Act Motor Speed

Figure 11: Behaviour of the Busy and Done output.

17

FAQ
Can I change the target position while the linear axis is moving in Mode 1 or 2?

The function block will not respond to any setpint changes during the movement and will continue to move
toward the original target. The function block only reacts to the new setpoints when the Busy output is False .

When can I change the mode?
The mode will be changed, when the Busy output is False (inMode 1 or 2), when the motor speed is zero in
Mode 4, or when the Done output is True inMode 3.

What happens if I set the Enb input to False while the linear axis is moving or the motor speed is not
zero?
If you deactivate the function block by setting the Enb input to False while the linear axis is in motion or the
motor is running at a non-zero speed, the main output of the block will abruptly drop to zero. This sudden
change in motor speed can potentially damage the motor or other mechanical components. Therefore, it’s
important to ensure that the motor has come to a stop or the movement is complete before deactivating the
block.

Examples

1 2 3 4 5 6 7 8

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

1 2 3 4 5 6 7 8

Time (seconds)

0

100

200

300

400

500

600

700

800 CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Example 1: Fine-tuning the
frequency drive’s control pa-
rameters.
Adjust the parameters so that
the motor can quickly and ac-
curately match the rotational
speed setpoint.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

0

100

200

300

400

500

CtrlOut [rpm]
Act Motor Speed [rpm]

X 3.62
Y 553.881

Example 2: Configure the Mo-
tionProX function block pa-
rameters.
Step-by-Step guide to config-
ure the block parameters.

Important for all examples: These values are provided solely as examples to illustrate the approach for setting
control parameters. Under no circumstances should these values be directly applied to your machine, not even
as initial starting points. The control parameters must be explicitly adjusted for each machine individually.

18

Fine-tuning the frequency drive’s control parameters
In this examples, we’ll walk you through the steps to configure the technology block for accurate positioning of an
electric axis. This step is essential before proceeding to the next steps, where you’ll tune the control parameters
of the position controller.

The Technology Block calculates the motor’s rotational speed setpoint, which is output through CtrlOut . This
output needs to be connected to a Frequency Drive that controls the motor’s speed. To ensure precise position-
ing, it’s crucial that the motor can accurately follow the rotational speed setpoint provided by CtrlOut . To achieve
this, start by operating the Technology Block in Mode 4. In this mode, you’ll send rotational speed setpoints along
with predefined acceleration and jerk values to the frequency drive.

The first step, described in this example, is to fine-tune the frequency drive’s control parameters so that the
motor can quickly and accurately match the rotational speed setpoint, with minimal overshoot. The motor must
also be capable of following these speed setpoints at the maximum allowable acceleration and jerk rates, main-
taining precision and stability.

Once you’ve ensured that the motor’s speed control is highly responsive and stable, you can proceed to use
the Technology Block in Modes 1, 2, and 3 for precise positioning tasks. This initial setup is key to achieving the
accurate positioning required in these modes.

Important Safety Note for Operating in Mode 4: When operating MotionProX in Mode 4, it’s crucial to
pay close attention to the position of the linear axis. In Mode 4, rotational speed setpoints are sent to the motor
regardless of the position of the linear axis. This means the motor will follow the speed commands without con-
sidering the current position, which can lead to unintended movements of the axis.
To avoid any potential issues, it’s recommended to perform this step while the linear axis is not yet coupled to the
motor, allowing the motor to spin freely without affecting the axis. This precaution helps prevent any accidental
damage to the mechanical components or misalignment of the system.
If this step is not carefully managed, the motor could drive the axis unexpectedly, leading to possible mechanical
damage or even safety hazards. Ensuring the motor is decoupled or free to rotate during this phase is essential
for a smooth and safe setup process.

The following is an example of the problems that can arise when setting the frequency drive. At the end of
the example, it is shown how precisely the entire system must react in order to use the controller.

1. Issue of Motor Speed Control in figure 12:

(a) Large Lag Error: The actual motor speed (blue line) lags significantly behind the motor speed set tra-
jectory (black line), indicating poor tracking performance. Themotor takes too long to reach the desired
speed, resulting in a slow response.

(b) No Steady-State Accuracy: The actual motor speed never reaches or maintains the target speed (red
dashed line).

19

1 2 3 4 5 6 7 8

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

1 2 3 4 5 6 7 8

Time (seconds)

0

100

200

300

400

500

600

700

800 CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 12: Frequency Drive with poorly set controller parameters. Large Lag Error and no Steady-State Accuracy.

2. Issue in figure 13:
(a) Large Lag Error: The actual motor speed (blue line) significantly lags behind the set trajectory (black

line) during both the acceleration and deceleration phases. This indicates a delayed response in fol-
lowing the desired speed profile.

(b) Overshoot and Oscillation: After reaching the target speed, the actual motor speed overshoots the
setpoint (red dashed line) and exhibits oscillations. This indicates poor damping and instability in the
speed control, leading to oscillatory behavior instead of smooth convergence to the target speed.

2 4 6 8 10 12 14

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

2 4 6 8 10 12 14

Time (seconds)

-200

0

200

400

600

800

1000

CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 13: Frequency Drive with poorly set controller parameters. Large Lag Error, Overshoot and Oscillation.

3. The behavior in figure 14 is better than in both figures 12 and 13, but there is an issue:
(a) Large Lag Error, where the actual motor speed (blue line) still lags behind the set trajectory (black line)

during acceleration and deceleration phases, indicating that the response is still delayed in following

20

the desired speed profile.

0 1 2 3 4 5 6 7

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0 1 2 3 4 5 6 7

Time (seconds)

0

100

200

300

400

500

600

700

800

CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 14: Frequency Drive with poorly set controller parameters. Large Lag Error.

4. The behavior in figure 15 is an improvement compared to the previous figures, but there is still a relative
large Lag Error:
(a) The actual motor speed (blue line) continues to lag behind the set trajectory (black line), indicating a

delayed response in following the desired speed profile. While performance has improved, the motor
still struggles to match the speed changes accurately.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (seconds)

0

100

200

300

400

500

600

700

800
CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 15: Frequency Drive with poorly set controller parameters. Relatively large Lag Error.

5. Optimal set of controller parameters in figure 16: The lag error between set trajectory (black line) and motor
actual speed (the blue line) is negligibly small, there is no over shoot and no oscillation. steady- state
accuracy is very high.

21

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

0

1

2

3

4

5

6

7

8

Mode

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

0

100

200

300

400

500

600

700

800 CtrlOut [rpm]
Act Motor Speed [rpm]
ParSpdCntrl.TgtSpd

Figure 16: Frequency Drive with optimal set of controller parameters.

22

Configure the MotionProX function block parameters
This guide provides detailed instructions on how to set up and configure the MotionProX Technology Block for
precise positioning tasks of an electric linear axis. To proceed with the following steps, the frequency drive must
be configured as described in the previous Example. This setup is a prerequisite for successful tuning of the
position control parameters.
1. General Informations

• Cyclic Interrupt Task Setup: Ensure that the Technology Block is called within a cyclic interrupt task in
your PLC. The feedback for the actual position must be read at least as frequently as the cycle time of
this cyclic interrupt task.

• Sampling Time: The task’s cycle time should be relatively fast, depending on the required accuracy
and motor dynamics. A sampling time of 1 to 5 milliseconds is a good starting point.

• Communication with the Frequency Drive: The Technology Block only calculates the speed setpoint for
the frequency drive. Control and status words for communication with the drive must be programmed
separately by the user. The speed setpoint calculated at the CtrlOut output should be sent directly to
the frequency drive without modification.

2. Define Units
• Consistency in Units: Before configuring the block, decide on the units you will use for the system.
These units must remain consistent throughout the configuration.

For example, if you choose millimeters for the linear axis, then all related variables should be in mil-
limeters:
Actual Position [mm], Target Position [mm], Speed Setpoint [mms], Acceleration Setpoint [mms2], and Jerk
[mms3].

For motor parameters, you might use rpm:
Motor Target Speed [rpm], Motor Acceleration [rpms], Motor Jerk [rpms2].

• Other Unit Options: You can choose other units, such asmeters, centimeters, micrometers for the linear
axis, or rad/s or percentage of nominal motor speed for the motor. The key is to select a unit system
and maintain consistency across all parameters and modes.

3. Set General Parameters
• Sample Time: Enter the PLC task’s cycle time (in seconds) into the SampleTime input.
• Max and Min Output: Define the maximum and minimum speed the Technology Block can output using
MaxOut andMinOut , for example, 1500 rpm maximum and −1500 rpm minimum.

4. Configure Setpoints for Mode 1

• Mode 1 Setup: Switch the block to Mode 1. Using the setpoint structure ParMovAbs , define a target
position with corresponding speed, acceleration, and jerk setpoints. Ensure that all setpoints (speed,
acceleration, jerk) are greater than zero.

5. Set Kp and Target Accuracy
• Kp Setting: Initially, enter a small value for Kp of the CtrlPar structure.
• Define Accuracy Window: Set the accuracy window usingWindow input in the same units chosen for
the linear axis (e.g., 0.2mm).

• Tune Time: Enter a value in seconds for TuneTime (e.g., 0.3s).
• Other Control Parameters: You can leave other control parameters at zero for now; they will be adjusted
later.

6. Activate the Block and Execute Movement
• Block Activation: Activate the block by setting Enb to True . Trigger a movement by sending a pulse to
the ExeMov ‘ input and observe the linear axis movement.

23

• The goal at this stage is to ensure that the actual position and the generated position trajectory (PosTrj out-
put) are parallel. Do not focus on target accuracy at this point. See figure 17.

Figure 17: Example with Kp too small! (Kp = 10, Window = 0.2mm, TuneTime = 0.3s)

7. Kp Tuning
• Incremental Kp Adjustments: Gradually increase the Kp value. After each increment, execute a new
movement by defining an appropriate target position and sending a pulse to ExeMov .

• Objective: Continue this process until the position trajectory (PosTrj) and the actual position are parallel,
indicating proper tuning. see figures 18, 19 and 20.

Figure 18: Kp increased to 20, still small! (Kp = 20, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0, Window =
0.2mm, TuneTime = 0.3s)

24

0 2 4 6 8 10 12 14 16

Time (seconds)

0

0.2

0.4

0.6

0.8

1

Enb
ExeMov

0 2 4 6 8 10 12 14 16

Time (seconds)

0

0.2

0.4

0.6

0.8

1

busy
done

0 2 4 6 8 10 12 14 16

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0 2 4 6 8 10 12 14 16

Time (seconds)

0

50

100

150

200

250 CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 19: Kp increased to 50, still small! (Kp = 50, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0, Window =
0.2mm, TuneTime = 0.3s)

1 2 3 4 5 6 7

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

1 2 3 4 5 6 7

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

1 2 3 4 5 6 7

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

1 2 3 4 5 6 7

Time (seconds)

0

100

200

300

400

500

CtrlOut [rpm]
Act Motor Speed [rpm]

X 3.83
Y 520.526

Figure 20: Kp increased to 200, ready for next step! (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 0.0, GainBwdSpdCtrl = 0.0,
Window = 0.2mm, TuneTime = 0.3s)

8. Determine the Positive Feedforward Parameter
• Execute a Positive Movement: Run a positive movement of the linear axis.
• Measure Motor Speed: At a point where the actual position and the position trajectory (PosTrj) are
parallel, read the motor speed.

• Calculate Gain: Divide the motor speed by the set speed value (MaxSpdSetPnt of the structure Par-
MovAbs). The result is the value you should enter into GainFwdSpdCtrl of the structure CtrlPar . In

25

the example shown in figure 21. The MaxSpdSetPnt was set to 5
mm
s . The motor speed is 520.52rpm.

The value for GainFwdSpdCtrl is then calculated by

GainFwdSpdCtrl =
520.52

5
= 104.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

0

100

200

300

400

500

CtrlOut [rpm]
Act Motor Speed [rpm]

X 3.62
Y 553.881

Figure 21: Adjusted Feedfordward parameters (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 104.1, GainBwdSpdCtrl = 0.0,
Window = 0.2mm, TuneTime = 0.3s)

9. Determine the Negative Feedforward Parameter
• Repeat Step 8: Perform the same process as in Step 8, but with a negative movement of the linear axis.
• Calculate and Set Gain: Write the resulting value into GainBwdSpdCtrl of the strucutre CtrlPar .

10. Fine-Tune Feedforward Parameters (Optional)
• Execute a Movement: Run a movement using the Kp = 20 value and the determined feedforward
parameters.

• Analyze the Motion: The movement should resemble the ideal trajectory shown in reference images
(e.g., similar to figure 20).

• Refine GainFwdSpdCtrl : Determine the positive feedforward gain again by observing the highest motor
speed during the movement. Divide this by the set speed value (MaxSpdSetPnt) and update GainFwd-
SpdCtrl with this value. See figure 21.

GainFwdSpdCtrl = 553.88

5
= 110.7

• Refine GainBwdSpdCtrl : Repeat the process with a negative movement to refine GainBwdSpdCtrl .

26

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

-1

-0.5

0

0.5

1

Enb
ExeMov

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

-1

-0.5

0

0.5

1

busy
done

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

2

4

6

8

10

PosTrj
ActPos
ParMovAbs.TgtPos

0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

0

100

200

300

400

500
CtrlOut [rpm]
Act Motor Speed [rpm]

Figure 22: (Kp = 200, Ki = 0.0, GainFwdSpdCtrl = 104.1, GainBwdSpdCtrl = 110.7, Window = 0.2mm, TuneTime = 0.3s)

11. Adjust Ki Parameter
• Monitor Signals: Observe the time between when the Busy signal is reset and when the Done signal is
set.

• Increase Ki : Gradually increase the Ki value and minimize the TuneTime to achieve the desired speed
and responsiveness.

12. Finalize the Position Controller Setup
• Optimal Configuration: Once the Kp , feedforward parameters, and Ki are tuned, the position controller
is optimally set.

• Run Movements in Modes 1, 2, and 3: You can now move the linear axis in Modes 1, 2, and 3 with any
target positions, speeds, accelerations, and jerks that your mechanics and motor can handle, without
needing to adjust the CtrlPar values again.

• By following these steps, you ensure that your Technology Block is finely tuned for accurate and re-
sponsive control, enabling smooth and precise operation of the electric axis in various modes.

27

	MotionProX
	Description
	Block diagram
	Inputs
	Outputs
	FAQ
	Examples
	Fine-tuning the frequency drive's control parameters
	Configure the MotionProX function block parameters

